Improving detection of influential nodes in complex networks
نویسندگان
چکیده
Recently an increasing amount of research is devoted to the question of how the most influential nodes (seeds) can be found effectively in a complex network. There are a number of measures proposed for this purpose, for instance, high-degree centrality measure reflects the importance of the network topology and has a reasonable runtime performance to find a set of nodes with highest degree, but they do not have a satisfactory dissemination potentiality in the network due to having many common neighbors (CN) and common neighbors of neighbors (CN). This flaw holds in other measures as well. In this paper, we compare high-degree centrality measure with other well-known measures using ten datasets in order to find a proportion for the common seeds in the seed sets obtained by them. We, thereof, propose an improved high-degree centrality measure (named DegreeDistance) and improve it to enhance accuracy in two phases, FIDD and SIDD, by putting a threshold on the number of common neighbors of already-selected seed nodes and a non-seed node which is under investigation to be selected as a seed as well as considering the influence score of seed nodes directly or through their common neighbors over the non-seed node. To evaluate the accuracy and runtime performance of DegreeDistance, FIDD, and SIDD, they are applied to eight large-scale networks and it finally turns out that SIDD dramatically outperforms other well-known measures and evinces comparatively more accurate performance in identifying the most influential nodes.
منابع مشابه
Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملA Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications
A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...
متن کاملCommunity Detection in Social Networks Based on Influential Nodes
Large-scale social networks emerged rapidly in recent years. Social networks have become complex networks. The structure of social networks is an important research area and has attracted much scientific interest. Community is an important structure in social networks. In this paper, we propose a community detection algorithm based on influential nodes. First, we introduce how to find influenti...
متن کاملThe Influence of Location on Nodes’ Centrality in Location-Based Social Networks
Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...
متن کاملfinding influential individual in Social Network graphs using CSCS algorithm and shapley value in game theory
In recent years, the social networks analysis gains great deal of attention. Social networks have various applications in different areas namely predicting disease epidemic, search engines and viral advertisements. A key property of social networks is that interpersonal relationships can influence the decisions that they make. Finding the most influential nodes is important in social networks b...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1504.06236 شماره
صفحات -
تاریخ انتشار 2015